Randomized Stress-Testing of Link-Time Optimizers

Vu Le

Chengnian Sun

Zhendong Su

Department of Computer Science, University of California, Davis, USA
{vmle, cnsun, su}@ucdavis.edu

ABSTRACT

Link-time optimization (LTO) is an increasingly important
and adopted modern optimization technology. It is currently
supported by many production compilers, including GCC,
LLVM, and Microsoft Visual C/C++. Despite its complexity,
but because it is more recent, LTO is relatively less tested
compared to the more mature, traditional optimizations. To
evaluate and help improve the quality of LTO, we present
the first extensive effort to stress-test the LTO components
of GCC and LLVM, the two most widely-used production C
compilers. In 11 months, we have discovered and reported 37
bugs (12 in GCC; 25 in LLVM). Developers have confirmed
21 of our bugs, and fixed 11 of them.

Our core technique is differential testing and realized in
the tool Proteus. We leverage existing compiler testing tools
(Csmith and Orion) to generate single-file test programs and
address two important challenges specific for LTO testing.
First, to thoroughly exercise LTO, Proteus automatically
transforms a single-file program into multiple compilation
units and stochastically assigns each an optimization level.
Second, for effective bug reporting, we develop a practical
mechanism to reduce LTO bugs involving multiple files. Our
results clearly demonstrate Proteus’s utility; we plan to make
ours a continuous effort in validating link-time optimizers.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
testing tools; D.3.2 [Programming Languages|: Language
Classifications—C; H.3.4 [Programming Languages]: Pro-
cessors—compilers

General Terms
Algorithms, Languages, Reliability, Verification

Keywords

Compiler testing, link-time optimizer, automated testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISSTA’15 , July 12-17, 2015, Baltimore, MD, USA

Copyright 2015 ACM 978-1-4503-3620-8/15/07 ...$15.00.

1. INTRODUCTION

Compilers are among the oldest, most complex and impor-
tant software. Perhaps the most critical component in any
compiler is its optimizer, which determines the overall perfor-
mance of its generated code. Decades of fruitful research in
compiler optimizations have led to many powerful techniques
that have helped improve the optimizer performance signifi-
cantly. We can categorize an optimization as intraprocedural
(which is performed inside a function), interprocedural (which
relates several functions), or whole-program (which takes into
account the entire program).

The traditional workflow of a compiler is to compile and op-

timize each file or module individually, and link the compiled
modules into a single executable file. This approach enables
intra- and sometimes also interprocedural optimizations (as a
file/module may contain multiple functions), but not whole-
program optimizations, because the compiler does not have
sufficient information about other modules at compile time.
This brings an opportunity for the linker to perform whole-
program optimizations at link time, when all information
about the program becomes available. This process is re-
ferred to as link-time optimization (LTO).
Link-Time Optimization LTO is an increasingly impor-
tant and adopted optimization technology: it is simple to use
(without needing to modify one’s build process) and effective
(providing substantial speedups). Studies [2, 5] have shown
that enabling LTO helps reduce code size by 15-20% and
increase speed by 5-15% on average. LTO is supported by
many modern compilers, e.g., GCC, LLVM, and Microsoft
Visual C/C++. Inevitably, it is also very sophisticated as it
performs whole-program analyses and optimizations.

To enable LTO, a compiler needs to alter its compilation
process. An LTO-compiled object file contains additional
intermediate representation besides the normal compiled ob-
ject code. For example, GCC writes the GIMPLE (GCC’s
intermediate language) representation of the source file to
the output object file when LTO is enabled. Similarly, LLVM
allows writing bitcode representation to the object file. At
link time, the linker gathers this extra information and per-
forms whole-program optimization, which becomes feasible
because all variable and function definitions are available.
We enable LTO in GCC and LLVM using the flag -flto.

State-of-the-Art Compiler Validation Because opti-
mization is a critical pass, people have devoted considerable
efforts to its validation [8, 15, 16, 24, 25]. Two notable
examples are Csmith [25] and Orion [8]. To stress-test C
compilers, Csmith generates random programs from scratch,
while Orion modifies an existing test program to generate

more test variants that are semantically equivalent under a
given input. Both have been extremely effective—each has
found hundreds of reported bugs in GCC and LLVM.

However, these efforts target only traditional optimizations.
There is little attention on validating LTO, the increasingly
important component of any modern compiler.

Proteus: Randomized LTO Testing This paper presents
Proteus', a randomized differential testing technique to stress-
test link-time optimizers, and the first extensive effort to
stress-test LTO in GCC and LLVM. Two key challenges arise:

1. How to obtain LTO-relevant test programs, which typ-
ically involve multiple compilation units?

2. How to effectively reduce the bug-triggering test pro-
grams?

To tackle the first challenge, we use Csmith to gener-
ate single-file test programs. We then automatically trans-
form each test program in two semantics-preserving manners.
First, we extend Orion to inject arbitrary function calls to
unezecuted code regions to increase function-level interproce-
dural dependencies. The increased dependencies stress-test
LTO more thoroughly. Second, we split each test program
into separate compilation units. We compile each of these
compilation units at a random optimization level, and finally
link the object files also at a random optimization level.

As for the second challenge, we develop an effective proce-
dure to reduce multiple-file test programs that trigger bugs.
The traditional reduction approach for LTO bugs is to reduce
each compilation unit individually, which is extremely ineffi-
cient, and more importantly, difficult to ensure test program
validity (i.e. rejecting tests with undefined behavior). In fact,
test-case reduction has often been a neglected real challenge
for bug reporting (we believe that more work should be done
and encouraged).

Our key observation is that the bug-triggering property of
our splitting function is preserved under reduction, which
allows us to perform reduction on the original single-file
test program. Indeed, after reduction, we split a reduced
test program into separate compilation units, and check for
bug-triggering behavior. This approach works very well in
practice. Most of our tests were reduced within several hours.
In comparison, existing reduction techniques take days or
weeks, or never terminate, and produce invalid reduced tests.

In 11 months of continuous testing, we have reported 37
bugs, among which 21 have been confirmed, and 11 have
been fixed. We are yet to report many others, because they
may be duplicate to our reported bugs that are not fixed.
We are waiting for the developers to fix our bugs before
reporting new ones.

Contributions We make the following main contributions:

e We introduce Proteus, the first randomized differential
testing technique to stress-test link-time optimizers,
and demonstrate that Proteus is extremely effective in
finding LTO bugs in GCC and LLVM.

e We propose a practical procedure to reduce LTO bugs
that is efficient (i.e. significantly shortening reduction
time) and effective (i.e. reliably rejecting invalid tests).

e We report our results in finding and reporting LTO
bugs. The GCC developers have fixed all but one of our

IProteus is a Greek sea god who can assume different forms.

Random Program —— Split Files Build Configurations

Lo~ > < |

compile (no LTO) compile (LTO) compile (LTO)

! ! |

execute execute execute
compare

l

reduce

Figure 1: Overview of Proteus’s approach.

12 reported bugs, four of which were marked as P1—the
most severe, release-blocking type of bugs. The LLVM
developers confirmed 9 bugs, but they have not fixed
any of them yet.

The remainder of the paper is structured as follows. Sec-
tion 2 illustrates our approach via two of our reported bugs,
one for GCC and one for LLVM. Section 3 discusses the
details of Proteus’s design and implementation. We present
our experimental results in Section 4. Finally, we survey
related work (Section 5) and conclude (Section 6).

2. ILLUSTRATIVE EXAMPLES

Generally, we can categorize compiler bugs into two classes:
crash/hang and miscompilation. In the first class, the com-
piler aborts due to unexpected runtime errors or does not ter-
minate due to implementation defects. A compiler crash/hang
is undesirable, but a miscompilation can be much more harm-
ful as it causes the compiler to silently compile the source
code incorrectly. These bugs are the most dangerous be-
cause the compiler subverts developers’ intent, causing their
programs to misbehave.

Our tool, Proteus, detects both types of bugs in compilers’
LTO components. Unlike traditional optimizations which
are performed during compilation, LTO takes place at link
time. It further complicates compilers, as they need to write
intermediate representations to object files, read them back
in, and perform whole-program analyses.

Figure 1 shows the overview of Proteus’s approach. It
starts with a single-file program p (generated by Csmith or
extended Orion), and compiles p in three different ways:

1. p is directly compiled without LTO.

2. p is compiled with LTO under various compilation and
linker flags.

3. p is split into multiple compilation units (each corre-
sponds to a function), which are separately compiled
under different optimization flags and linked with LTO.

Proteus then executes these compiled programs and compares
the execution results. Any inconsistency indicates a bug.
We next demonstrate this process via two concrete bugs,
one for GCC and one for LLVM.
GCC Bug #60404 Figure 4c shows Proteus’s steps to
find this bug. The original program, generated by Orion,
prints 0 — the expected value of a[b] — and terminates
(Figure 2a). Note that after the call fn2(0) in the function
main, the value of variable b remains unchanged (é.e., 0).

/*x*x small.c *xx/
#include <stdio.h>
int a[1] = { 0 }, b = 0;

void fnl (int p) { }
void fn2 (int p) {

/*%x*x small.h xxx/
#include <stdio.h>
int a[l], b;

void fnl (int p);
void fn2 (int p);

/x%x fnl.c *xx/
void fnl (int p) { }

/x%xx fn2.c *xxx/
extern int b;
extern void fnl (int);
void fn2 (int p) {

b = p++;

fnl (p);
}

/**%*% Main.c **x/

int printf (const char x, ..

L)

b = p++; /*xx small.c #kk/
fnl (p); #include "small.h"
} int a[1l] = {0}, b =0;
int main () {
fn2 (0); /xkk fnl.c *xx/
printf ("%d\n", a[bl); #include "small.h"
return 0; void fnl (int p) { }
}

/**xx fn2.c *xxx/

(a) A simplified version of a pro-
gram generated by Orion (the orig-
inal version has 2367 lines of code).
All compilers under test compile it
correctly. }

b = p++;
fnl (p);

X X /*%* main.c s**/
/*xx configuration sxx/

gcc -flto -01 -c fnl.c int main () {
gcc -flto -01 -c fn2.c n2 (0):
gcc -flto -01 -c main.c

gcc -flto -01 -c t.c

gcc -flto -00 fnl.o fn2.0 main.o t.o }

return 0;

(b) A build configuration that trig-
gers a GCC LTO bug on split files
in Figure 2c.

ure 2a.

#include "small.h"
void fn2 (int p) {

#include "small.h"

printf ("sd\n", a[b]l);

extern void fn2 (int);
int a[l], b;
int main () {
fn2 (0);
printf ("sd\n", a[b]);
return 0;

}

/**x configuration sxx/
gcc -flto -01 -c fnl.c
gcc -flto -01 -c fn2.c
gcc -flto -01 -c main.c
gcc -flto -00 fnl.o fn2.0 main.o

(c) Files split from the code in Fig- (d) Cleaned up files with the bug-

triggering configuration for bug re-
porting.

Figure 2: Proteus’s workflow: from original file (in Figure (a)) to split files (in Figure (c)) to reported files
(in Figure (d)). GCC revision 208268 miscompiles these files. The compiled program returns 1 instead of 0.

(http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60404)

However, the GCC development trunk (revision 208268)
miscompiles the files that are split from the original file by
Proteus (Figure 2c), under the build configuration shown
in Figure 2b. The compiled program in this case prints 1
instead of the expected 0. In this program, b was incorrectly
assigned the value 1 after invoking fn2(0). The printed
value a[b] (or a[1]) is the memory location right after the
boundary of the array a, which is coincidentally b (or 1).
Figure 2d shows the files and the build configuration that
we used for reporting after some cleaning up.

The bug happens because while coalescing SSA (single
static assignment) parameter variables, the GCC developer
mistakenly assumes that intermediate representation (IR) in
object files are compiled without optimization, or without
LTO. When the assumption is invalid, GCC misinterprets
the IR stored in object files and generates incorrect code.

In this example, GCC compiles fn2.c at -01 to produce
fn2.0, whose optimized IR is similar to the following:

void fn2 (int p) { p.1 =p + 1; b = p; fnl (p_1); }

When GCC links the program with -flto -00, it assumes
that the IR of fn2.c is unoptimized and that all the SSA vari-
ables originated from the parameter p are already coalesced
into a single partition. As the assumption is wrong, GCC
fails to allocate a memory location for p_1, and consequently
both p and p_1 share the same address. The miscompiled
code is similar to the following:

void fn2 (int p) { p=p + 1; b =p; fnl (p); }

GCC correctly compiles the original single-file program
and its split files without LTO because in these cases, the

/x*x small.c *xx/
int a, b=1, c;
int fnl (unsigned char pl, int p2) {
return p2 || pl >17? 0 : p2;
}
int main () {
int d = 0;
for (; a < 1; a++) {
c=1;
fnl ((b & c) | 10L, d);
}

return 0;
}
/**x configuration sxx/
clang -flto -00 -c small.c -o small.o
clang -flto -00 small.o

Figure 3: LLVM 3.4 and trunk revision 204228 mis-
compile this program at -O0. The compiled exe-
cutable hangs instead of terminating. (http://llvm.
org/bugs/show_bug. cgi?id=19201)

complication involving writing/reading/linking multiple IRs
do not arise.

LLVM Bug #19201 Figure 3 shows an LLVM LTO bug,
triggered by a test program generated by Orion. The test
program is clearly well-defined according to the C standard.
It should execute and terminate normally. However, both
LLVM 3.4 and its development trunk miscompile the code
with LTO enabled at -00, resulting in a non-terminating pro-
gram. With LTO disabled the program is correctly compiled.

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60404
http://llvm.org/bugs/show_bug.cgi?id=19201
http://llvm.org/bugs/show_bug.cgi?id=19201

It is evidently a bug in LLVM, because the program is
valid and the semantics of the program compiled with LTO
is inconsistent with that of its non-LTO counterpart. The
LLVM developers have yet to comment on the root cause of
the bug. To shed some light on this bug, we have disassem-
bled the miscompiled program and inspected its assembly
code. LLVM compiles the program into an infinite loop with
an empty body, similar to the following;:

int main() { while(1) {}; return 0; }

We suspect that LLVM mistakenly concludes that the
program contains undefined behavior, and consequently gen-
erates a non-terminating loop. This happens because there
is no restriction on compilers for compiling programs hav-
ing undefined behaviors. Compilers are only obligated to
consider valid programs.

3. DESIGN AND REALIZATION

This section describes our approach and realization of Pro-
teus. At the high level, Proteus first leverages Csmith and
Orion to generate single-file test programs to enable later
phases of our differential testing of LTO. In particular, we use
the generated programs to seed the following two-step pro-
cess: (1) we modify Orion to insert arbitrary function calls
to unexecuted code regions to increase function-level depen-
dencies; and (2) we divide a single test program into separate
compilation units. Both steps are semantics-preserving and
designed to specifically target LTO testing. Our goal is to
find build configurations that lead to deviant behavior.

DEFINITION 3.1 (SPLIT FUNCTION). The function Split
takes as input a single program and divides it into the follow-
ings: (1) a header file that contains all type definitions and
global variable/function declarations; (2) an initialization
source file that contains all initializations of global variables
(this file includes the header file); (3) a set of source files, each
of which contains one function definition from the original
source file (these files also include the header file).

For example, Split divides a single file in Figure 2a to a
header file, an initialization file, and a set of function files
in Figure 2c. The transformation imposed by Split does not
change the semantics of the original program.

DEFINITION 3.2 (BUILD CONFIGURATION). A build con-
figuration specifies how to compile and link a set of source
files into a single executable. It compiles each source file
into an object file and links all the object files into a final
ezecutable. Each compilation and linking step is parametrized
over a set of optimization flags.

For instance, Figure 2b is a build configuration that triggers
a bug in GCC while compiling the files in Figure 2c.

3.1 Differential Testing of LTO

Proteus uses differential testing to find LTO bugs. The
traditional view of differential testing [12] is quite simple: If
two systems under test behave differently on some input, it
indicates a bug in one of the systems, or both. Csmith has
implemented this view [25]. It generates random C programs
and seeks for deviant behavior in different C compilers while
compiling/running the same source program.

Orion introduces an alternate view on differential test-
ing [8]. It profiles the execution of a program P under some

Algorithm 1: Proteus’s main procedure

1 procedure Validate (Compiler Comp, TestProgram P,
InputSet 1):

2 begin
/* Calculate expected output */
3 Pege := Comp.Compile(P)
4 I0 := {(i, Pewe.Execute(t)) |t € I}
/* Perform differential testing =/
5 DiffTest(Comp, P,10)
6 DiffTest(Comp, Split(P),I0)

7 procedure DiffTest (Compiler Comp, TestPrograms P,
InputOutputSet 10):

8 begin
/* Generate configs and verify */

9 for 1. MAX_ ITER do
10 o := GenerateRandomBuildConfig(7P)
11 P/ .. := Comp.Compile(P,o)
12 if AP.,. then
13 L ReportCrashHang(Comp, o, P)
14 else
15 foreach (i,0) € IO do
16 if P.,..Ezecute(i) # o then
17 L ReportMiscomp(Comp,o, P, 1)

input I. It then generates many variants of P by randomly
pruning unexecuted statements in P. Since these variants
are equivalent w.r.t. I (i.e., they produce the same output
under the input I), Orion seeks for deviant behavior in a
compiler while compiling/running these variants on I.

We take yet another view of differential testing, based
on the observation that all compiled programs built from
different build configurations are semantically equivalent.
Proteus seeks for deviant behavior in a compiler while com-
piling/running the program (and its split version) under
different LTO build configurations. Similar to the view in
Orion, this view has some attractive advantages over the
original (and Csmith’s) approach. Proteus can operate on
existing code base (either real or randomly generated), and it
can validate a single compiler in isolation (where competing
compilers do not exist).

3.2 Implementation

Algorithm 1 describes the main procedure for finding LTO
bugs from a test program in Proteus. It takes as input a
compiler under test Comp, a program P and a set of its
input I, and searches for build configurations that trigger
LTO bugs on P (or its split files) under some input in I.

The algorithm consists of two main steps. First, Proteus
calculates the expected output of the original program built
without LTO (lines 3—4). It then searches for inconsistent
behaviors in the compiler when LTO is enabled while com-
piling/running the program and its split files (lines 5-6).
The loop on line 9 randomly generates build configurations
(line 10) and checks for any deviance from the expected be-
havior (lines 12-17). Proteus reports a crashing or hang bug,
if Comp crashes or hangs during the build process (line 13),
or a miscompilation bug, if the running output is different
from the expected output on some input (line 17).

Algorithm 1 is realized as a shell script. We implement
the function Split in C++ using LLVM’s LibTooling li-
brary [22]. This implementation follows the function’s de-

scription in Definition 3.1. Similarly, the implementation of
GenerateRandomBuildConfig follows the description of build
configuration in Definition 3.2. We assign a random opti-
mization flag to each compilation or linking step to generate
a random build configuration.

Proteus is simple to realize, yet very effective in finding
LTO bugs (see Section 4). Our implementation contains only
approximately 300 lines of bash scripts and 200 lines of C++
code. Its simplicity makes Proteus general and applicable to
other language settings.

3.3 Bug Reduction

Once Proteus finds a bug, we need to reduce it before filing
a report in the affected compiler’s bug database. This step is
important because developers usually ignore large test cases
or specifically ask reporters to reduce their test cases further.

We can automate this step using delta-debugging. At a
high-level, delta-debugging works by gradually reducing the
input program and ensuring that the reduced program still
triggers the bug and is valid (i.e., does not contain undefined
behavior). State-of-the art delta-debugging reducers include
Berkeley Delta [13] and C-Reduce [19]. Unfortunately, these
reducers support reducing only a single file.

Traditional Approach to Reducing LTO Bugs Because
LTO bugs normally involve multiple files, reducing them is
quite challenging, especially for miscompilation bugs. In fact,
the GCC official guide to reduce bugs does not even have
any instruction for reducing LTO miscompilation bugs [6],
forcing the developers to rely on their experience to craft
their own reduction strategies.

The standard approach to reducing miscompilation LTO
bugs is to reduce each file individually (e.g. with Delta or C-
Reduce). This is very inefficient and error-prone as these files
are normally interdependent. While reducing a file, reduction
tools cannot remove constructs used in other files, as this
would invalidate the integrity of the program. Therefore, the
reduction results are usually unsatisfactory.

Moreover, we do not have a reliable way to detect unde-
fined behavior in multiple-file programs. For example, the C
interpreter in CompCert, which can detect undefined behav-
ior, supports only single-file programs. This makes reducing
LTO bugs even more challenging. Because we cannot check
for program validity during reduction, the reduced program
may contain undefined behavior and become invalid.
Reducing LTO Bugs in Proteus Fortunately, in our
settings, by design the splitting function Split has a special
property that allows us to perform reduction on a single file,
which significantly improves reduction effectiveness.

PROPOSITION 3.1. The bug-triggering property of Split is
preserved under reduction. That is,
VPYCompVoVi: Bug(Comp, Split(P),o,i) —
3P': P! = A(P) A Bug(Comp, Split(P'),0,i)
where:
P is the program whose split files trigger the bug,
Comp is the compiler affected by the bug,
o is the bug-triggering build configuration,
i is the bug-triggering input, and
A is the reduction function.

The above claim states that, if the split files of a pro-
gram P trigger a bug under some build configuration o and
some input 4, the reduction tool A will produce a reduced

(i.e. smaller) program P’ such that its split files also trig-
ger the same bug—to be precise the same manifested bug
characteristics, i.e. crash or miscompilation—under the same
configuration and input.

We leverage this property to reduce LTO bugs found by
Proteus. Our reduction script first applies delta reduction
on the original single file. It then uses Split to separate the
reduced file, and checks for bug-triggering behavior on the
split files. We carefully design the build configuration so
that it is always valid for the reduced split files, although
our reduction tool may eliminate several functions (and thus
their corresponding split files).

Test Reduction Efficiency Our delta tool is a meta-
reducer. It involves a nested loop that invokes Berkeley Delta
followed by C-Reduce. The loop terminates if a fixpoint is
reached (i.e., the file is not reduced any further). Our meta-
reducer strikes a nice balance of Berkeley Delta’s efficiency
and C-Reduce effectiveness. It has another crucial benefit,
to maintain test case validity, which we discuss next.

Reduced Test Validity During reduction, we need to
reject reduced programs that contain undefined behavior.
We follow C-Reduce’s and Orion’s approaches in rejecting
these programs. In particular, we leverage GCC and LLVM
warnings and Clang’s undefined behavior sanitizer. When-
ever applicable, we also heavily rely on CompCert and its
C interpreter because the compiler has added support for
more language features. In the process, we also found two
interesting bugs in CompCert (see Section 4.4). Since our
reduction does not require human intervention, we chain it
with Proteus to create a unified automatic bug finding and
reducing process, which we discuss next.

3.4 Automatic Bug Finding and Reducing

Our design goal is to minimize human involvement in the
process of finding and reducing bugs. To that end, we create
a script to automate this process.

Our script involves a loop, where in each iteration, it in-
vokes Csmith/Orion to generate a random C program, and
uses Proteus to find bugs derived from this program. If
Proteus finds a bug, the script generates the bug’s reduc-
tion script, and invokes the reducer. The script sends a
notification when the reduction process terminates.

During this process, it is important to avoid reporting
duplicated bugs. Two bugs are duplicate if they share the
same root cause. Unfortunately, it is difficult to decide if two
bugs have the same cause because it requires deep knowledge
of the compilers’ internals. As an approximate duplicate
check, we use bug signatures that involve the bug-triggering
compiler setups. We cluster bugs w.r.t. their signatures and
report only one representative from each cluster. After a bug
has been fixed, we run the compiler again on other bugs from
the same cluster. Any bugs that do not manifest anymore
are likely duplicates. If a bug still manifests, it is different.
We then reduce it and file a separate report.

Bug signature A bug signature is a vector of binary
elements, each corresponding to the result (i.e., trigger bug/-
does not trigger bug) of running a particular compiler setup.

The first kind of signature is compiler signature, in which
setups are obtained by varying the compilers and compiler
versions. We use two compilers (GCC and LLVM) and
their three most recent releases in addition to the devel-
opment trunk. We check in both 32-bit (-m32) and 64-bit
(-m64) modes, with LTO enabled/disabled (use -flto or not).

For each compiler setup (compiler, version, mode, LTO en-
abled/disabled), we (1) test the original program in all op-
timization levels (-00, -01, -02, -0s, -03), (2) test split files
using the same optimization level over all levels, and (3) test
split files using the randomly generated build configuration.

The second kind of signatures is optimization signature,
which is obtained by varying the optimization flags in the
build configuration after reduction is complete. In particular,
we enumerate all possible combinations of optimization flags
for all compilation and linking steps in the build configuration.
This is feasible because normally after reduction, the number
of functions is very small (from 2 to 4 functions). The
byproduct of this step is the minimal build configuration
that triggers the bug (i.e., the build configuration that uses
the least optimization). We report the bug with this build
configuration. We also check previous compiler versions for
potential regression bugs.

Note that these two signatures may be imprecise. They
may misclassify bugs and cause real bugs to slip through.
However, they help us prioritize our resources on more in-
teresting bugs in case there are many more inconsistencies
than what we can feasibly process.

4. EVALUATION

We started our experiments with Proteus from the end of
February 2014. We focus on testing two mainstream open-
source C compilers—GCC and LLVM—because of their open
bug tracking systems. This section describes the results of
our testing effort in about 11 months.

Result Summary Proteus is very effective:

o Many detected bugs: Proteus has detected 37 bugs in
GCC and LLVM. Developers have confirmed 21 of our
bugs. Eight out of the 12 GCC bugs were discovered
from split programs, while Csmith and Orion alone
would fail to discover these. Thus, the results highlight
the utility and effectiveness of Proteus.

e Many long-latent bugs: Many of the detected bugs have
been latent in old versions of GCC and LLVM. These
bugs had resisted all traditional validation approaches.
This further emphasizes Proteus’s effectiveness.

e All but one reported GCC bugs are fized: So far, 11 out
of our 12 reported GCC bugs have already been fixed.

e Diversified bugs: Proteus has found many kinds of bugs
in GCC and LLVM’s LTO components. The majority
are miscompilations, the most serious kind.

4.1 Testing Setup

We first describe our set up for Proteus to find LTO bugs
before discussing our empirical results.
Hardware and Compilers We focus our testing on the
x86-linux platform due to its popularity and our ease of
access. We perform our testing on two machines (one 18 core
and one 6 core) running Ubuntu 12.04 (x86_64). We only
test the daily-built development trunks of GCC and LLVM.
Once Proteus has found a bug in a compiler, we also validate
the bug against other major versions of that compiler.
Test Programs We build our LTO test corpus by leveraging
Csmith-generated programs and their variants generated
by Orion. Traditionally, Orion only generates variants by
removing unexecuted statements. We modify Orion to also

allow inserting arbitrary function calls to these unexecuted
area. We then further split these programs into separate
compilation units. We run Csmith in its “swarm testing”
mode [7] to maximize its effectiveness.

Real-world projects are an interesting source to test com-
pilers. We can certainly apply Proteus on these projects to
detect LTO bugs. However, reducing these projects is very
challenging as they usually involve many files, each of them
can be very large. It is also more difficult to detect undefined
behavior in these projects. This explains why we have only
focused on randomly generated programs. We leave as future
work how to test with real-world projects and how to reduce
any detected bugs.

Build Configurations While generating build configura-
tions, we only use the popular compiler optimization flags
(i.e. -0, -01, -Os, -02, and -03). Each compilation and
linking step is assigned with the -flto flag to enable LTO.
We consider generating build configurations for both 32-bit
(-m32) and 64-bit (-m64) environments.

For a single program, we are able to enumerate all possible
optimization flags to generate build configurations. However,
this is infeasible in case we split the program into separate
files, because the number of files is usually large (10+ files).
We need to sample this large search space and select only a
certain number of build configurations to perform testing.

The number of build configurations generated for each pro-
gram is a trade-off between the depth and scope of Proteus’s
testing. If we generate many build configurations, we may
test that program more thoroughly, but we may lose the
opportunity to test other programs. On the other hand, gen-
erating a few build configurations helps Proteus cover more
programs, but it may not be sufficient to trigger the buggy
behavior of each of the generated programs. Our empirical
experience suggests that 8 build configurations strikes a good
balance. We control a random parameter whose expected
value is 8 and use it to generate build configurations.

4.2 Quantitative Results

Having described our testing setup, we are now ready to
discuss our results using Proteus to find LTO bugs. Table 1
shows the details of our reported bugs.

Bug Count We have reported 37 bugs: 12 in GCC and 25
in LLVM. Till end of January, 2015, GCC developers have
fixed 11 bugs. The LLVM developers have confirmed 9 of
our bugs, but they have not fixed any of them. A number
of private communications suggested that they were busy
fixing internal bugs and working on Swift.

Before reporting a bug, we ensure that it has a differ-
ent symptom from the previously reported bugs. However,
reporting duplicate bugs is unavoidable, as compilers are
complex, and bugs having different symptoms may turn out
to have the same root cause. So far, we only reported one du-
plicated GCC bug (we did not include it in our results). Our
LLVM bugs may contain duplicates, but from our experience
on previous work [8], the duplication rate is low.

Importance of Reported Bugs Because we use randomly
generated programs offered by Csmith and Orion to find LTO
bugs, it is reasonable to ask if these bugs really matter in
practice. The related discussions in Csmith [25] and Orion [8]
are quite relevant here.

First, developers have acknowledged and fixed these bugs.
GCC developers are impressively responsive; they generally
confirmed our bugs within one day, and fixed them after three

Table 1: The valid reported bugs for GCC and LLVM.

Bug ID Bug Type Status Orig. SLOC | Reduc. SLOC | Test Program Affected Versions Modes
gee-60319 Miscomp. Fixed 1818 11 Csmith + Split | 4.6, 4.7, 4.8, 4.9-trunk | m32, m64
gee-60404 Miscomp. Fixed 2367 28 Orion + Split 4.9-trunk | m32, m64
gce-60405 Crash Fixed 3242 5 Csmith 4.9-trunk | m32, m64
gce-60461 Link Error Fixed 3242 37 Csmith 4.9-trunk | m32, m64
gee-61184 Miscomp. Fixed 2821 13 Csmith + Split 5.0-trunk | m32, m64
gce-61278 Crash Fixed 1446 30 Csmith + Split 5.0-trunk m64
gee-61602 Crash Fixed 6659 7 Orion 5.0-trunk | m32, m64
gee-61786 Miscomp. Fixed 1823 26 Csmith 5.0-trunk | m32, m64
gee-61969 Miscomp. Fixed 1860 261 Csmith + Split 4.8, 4.9, 5.0-trunk m32
gce-62209 Crash Confirmed 1495 23 Csmith + Split 4.8, 4.9, 5.0-trunk | m32, m64
gce-62238 Crash Fixed 4276 27 Csmith + Split 4.9, 5.0-trunk m64
gee-64684 Miscomp. Fixed 1745 13 Orion+Split 5.0-trunk | m32, m64
1lvim-18984 Miscomp. Confirmed 2266 27 Csmith 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvim-19026 Miscomp. Confirmed 2729 10 Csmith 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvm-19062 Miscomp. New 3243 12 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvm-19072 Miscomp. New 1691 36 Csmith + Split | 3.2, 3.3, 3.4, 3.5-trunk mo64
1lvm-19073 Miscomp. New 1703 29 Csmith + Split | 3.2, 3.3, 3.4, 3.5-trunk m64
1lvm-19078 Miscomp. New 3450 44 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvm-19079 | Link Error New 3638 52 Csmith + Split | 3.2, 3.3, 3.4, 3.5-trunk m64
1lvmm-19093 | Miscomp. New 4815 25 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvm-19109 Miscomp. New 8232 24 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvim-19111 Miscomp. New 20556 26 Csmith + Split | 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvm-19132 Miscomp. New 16626 23 Csmith + Split | 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvn-19138 Miscomp. New 5122 12 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvin-19146 Miscomp. New 5369 19 Orion 3.4, 3.5-trunk | m32, m64
llvm-19184 | Link Error New 4310 47 Orion 3.5-trunk | m32, m64
1lvim-19201 Miscomp. New 9821 17 Orion 3.4, 3.5-trunk m64
1lvm-19202 Miscomp. New 3043 10 Orion 3.2, 3.3, 3.4, 3.5-trunk m32
1lvim-19219 Miscomp. New 2169 23 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvim-19225 Miscomp. New 2241 21 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvm-19830 | Link error | Confirmed 1291 15 Orion 3.5-trunk | m32, m64
1lvim-19885 Miscomp. Confirmed 9748 24 Orion 3.2, 3.3, 3.4 | m32, m64
1lvim-19889 Miscomp. Confirmed 8098 14 Orion 3.2, 3.3, 3.4, 3.5-trunk | m32, m64
1lvim-19891 Miscomp. Confirmed 11161 26 Orion 3.4, 3.5-trunk | m32, m64
1lvim-19907 Miscomp. Confirmed 5356 25 Orion 3.5-trunk | m32, m64
1lvim-20172 Miscomp. Confirmed 4683 59 Orion 3.5-trunk | m32, m64
1lvim-20237 Miscomp. Confirmed 3502 44 Orion 3.4, 3.5-trunk m64

days on average. Second, some of these bugs were marked as
critical. In fact, the GCC developers marked a third of our
reported bugs as P1, the most severe, release-blocking type
of bugs. Finally, both Csmith and Orion have encountered
cases where compiler bugs triggered by real-world programs
were actually linked to their reported bugs derived from
random programs. We expect this to also hold for Proteus
as we continue finding and reporting LTO bugs.
Bug Type We classify bugs into two main categories: (1)
bugs that manifest when we compile programs, and (2) bugs
that manifest when we execute the compiled programs. A
compile-time bug can be a compiler crashing bug (e.g., inter-
nal compiler errors), complier hang bug (e.g., the compiler
hangs while compiling the program), or linking error bug
(e.g., the compiler cannot link object files into an executable
file). A runtime bug happens when the compiled program
behaves abnormally w.r.t. its expected behavior. For ex-
ample, it may crash, hang, or produce wrong output. We
refer to these bugs as miscompilation bugs. These bugs are
the most serious, because the compiled programs silently
produce wrong results.

Table 2 classifies the bugs found by Proteus according to
the above taxonomy (note that Proteus has not yet encoun-
tered any hang bugs). This result shows that the majority

of LTO bugs found by Proteus are miscompilation bugs, the
most important type. This is expected because we specifi-
cally target an important optimization component of modern
compilers: the LTO component.

Table 2: Bug classification.

GCC | LLVM | TOTAL

Miscompilation 6 22 28
Crash 5 0 5

Link Error 1 3 4

Affected Compiler Versions Our strategy is to test only
the latest development trunks of GCC and LLVM. Once a bug
is found, we also use it to validate other versions. Another
strategy is to test all compiler versions in parallel. We do not
implement this strategy because it is much more expensive,
and developers are more interested in bugs that occur in
recent versions. Nonetheless, while all of our reported bugs
affect the development trunk, most of them also affect earlier
stable releases. These bugs had been latent for many years.

4.3 Assorted LTO Bugs

We now sample a few of our reported bugs, three each for
GCC and LLVM, to provide a glimpse on the diversity of bugs

/*xx f0o.C *%x/
void foo (char c) {

for (c = 0; c >= 0; c++) ;
}
/*%% main.c kxx/
extern void foo (char c);
int main () {

foo(0); return 0;
}
/**x configuration sxx/
gcc -flto -00 -c foo.c
gcc -flto -00 -c main.c
gcc -flto -0s foo.o main.o

(a) GCC trunk (v4.9 rev. 208040)
miscompiles this program at -Os
and above. The compiled code
hangs instead of terminating.
(http://gcc.gnu.org/bugzilla/
show__bug.cgi?id=60319)

/*xx small.c **x/

int printf (const char x, ...);
int a, b, ¢, d=1, e, g, h;
short f;

int fnl (int pl, int p2) {
return -p2 <0 ? 0 : p2;
}
int fn2 () { return b = 0; }
void fn3 (int p) {
int i, j =d = 0;
i=17?721:0;
f=30113116>77?26:7];
if (1(1 &1&& f)) {
if (g) {}
for (g =0; g !=1; g++) {
g || fnl (fn2 (), p);
if ('d) {
e=g || a;
break;
}
}
// c is updated below
for (h = -1; ¢ >=0; c = h)
if (g) break;
}
}
int main () {
fn3 (1);
printf ("sd\n", c);
return 0;
}
/**x configuration sxx/
clang -flto -00 small.c
clang -flto -00 small.o

(d) LLVM trunk (v3.5 rev. 203239)
miscompiles this program at -O0
and -O1l. The executable prints 0
instead of expected -1.
(http://llvmm.org/bugs/show__bug.
cgi?id=19078)

/*%x small.c skx/
struct S {
int f1;
int f2;
} all] = { {0, 0} };
int b, c;
static unsigned short fnl(struct S);
void fn2 () {

for (; c;)
b =0;
fnl (a[0]);

}
unsigned short fnl (struct S p) {
if (p.fl) fn2 ();
return 0;
}
int main () {
fn2 ();
return 0;
}
/**x configuration sxx/
gcc -flto -0s -c small.c
gcc -flto -0s small.o

(b) GCC trunk (v4.9 rev. 208393)
fails while linking this program at
-Os.

(http://gcc.gnu.org/bugzilla/
show__bug.cgi?id=60461)

/¥kk small.c sxx/
#include <assert.h>

int xa, *xvolatile b = &a, c,
*d = &, *e = &c, *xf = &a, g;

void foo () {
for (;;) {
assert (a == 0);
*f = &g;
*b = 0;
assert (a == 0); // fails
*f = 0;
if (xe) break;
}
}
int main () {
*d = 1;
assert (a == 0);
foo ();
return 0;
}
/*%* configuration sxx/
clang--flto -02 -c small.c
clang -flto -02 small.o

(e) LLVM trunk (v3.5 rev. 203564)
miscompiles this program. The
executable violates the second
assertion in foo.
(http://llvi.org/bugs/show__bug.
cgi?id=19109)

/xxkx fnl.c *xx/

extern void fn2 (void);
extern int a;

void fnl () {

a=-1;
fn2 ();
a & 1;

}

/xxkx fn2.c *xx/

extern int a;

void fn2 (void) { a = 0; }
/*%% main.c skx/

extern void fnl (void);

int a;
int main () {
fnl ();

if (a != 0) __builtin_abort ();
return 0;
}
/*%x configuration sxx/
gcc-trunk -flto -01 -c fnl.c
gcc-trunk -flto -0s -c fn2.c
gcc-trunk -flto -00 -c main.c
gcc-trunk -flto fnl.o fn2.0 main.o

(¢) GCC trunk (v5.0 rev. 219832)
miscompiles this program. The
compile code aborts instead of
terminating normally.
(http://gcc.gnu.org/bugzilla/
show__bug.cgi?id=64684)

/x*xx f00.C *%xx/
extern int a, c;
static int bar (int pl, int p2) {
return p2 + 1;
}
void foo (void) {
inte=0,9g=0, b=1;
a=(b==07?0:Db);
if (bar (a || 0, g) & 1)
a=¢e&& 0;
}
/*%*% main.c sk*x/
extern int foo (void);
int a, c;
int main () {
for (; ¢ < 2; c++)
foo (); // called twice
return 0;
}
/**x configuration sxx/
clang -flto -00 -c foo.c
clang -flto -01 -c main.c
clang -flto -01 foo.o main.o

(f) LLVM 3.4 and trunk (v3.5 rev.
203791) miscompile this program.
The compiled executable hangs.
(http://llvi.org/bugs/show__bug.
cgi?id=19132)

Figure 4: Example test programs uncovering a diverse array of GCC and LLVM bugs.

detected by Proteus. For LLVM bugs, we only discuss their
symptoms, because LLVM developers have not investigated
and explained the causes of the failures.

GCC Bug #60319 The function foo in Figure 4a relies
on the wrap of the variable ¢ to a negative number to exit
the loop. However, GCC miscompiles this function into an
infinite loop, causing the compiled executable to hang.

During the build process, GCC compiled foo.c without
any optimization (-00). At this optimization level, GCC
enables by default the flag fno-strict-overflow, which tells
the compiler not to treat signed overflow as undefined. Con-
sequently, GCC accepted the wrapping behavior of ¢ and
dumped the correctly compiled IR to the object file foo.o.

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60319
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60319
http://llvm.org/bugs/show_bug.cgi?id=19078
http://llvm.org/bugs/show_bug.cgi?id=19078
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60461
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60461
http://llvm.org/bugs/show_bug.cgi?id=19109
http://llvm.org/bugs/show_bug.cgi?id=19109
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=64684
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=64684
http://llvm.org/bugs/show_bug.cgi?id=19132
http://llvm.org/bugs/show_bug.cgi?id=19132

/*xx small.c **x/
int e[2][2];

int main () {
return e[0][3];
}
$ ccomp -interp small.c
Time 11: program terminated (exit code = 0)
$ clang -fsanitize=undefined -m32 -00 small.c
small.c:4:12: warning: array index 3 is past the end \
of the array (which contains 2 elements) \
[-Warray-bounds]
return e[0][3];

~

small.c:1:1: note: array ’'e’ declared here

int e[2][2];

1 warning generated.

$ a.out

small.c:4:12: runtime error: index 3 out of bounds \
for type ’int_[2]’

(a) CompCert fails to reject a program that has an in-
valid multi-dimensional array access.

/*x*x small.c *xx/
#include <stdio.h>
void main () {
printf("foo\n");
}
$ ccomp -interp small.c
$ ccomp small.c
$ a.out
foo
$ clang-trunk -m32 -00 small.c
small.c:2:1: warning: return type of 'main’ is not \
"int’ [-Wmain-return-type]
void main () {
small.c:2:1: note: change return type to 'int’
void main () {

A

int

1 warning generated.
$ a.out

foo

(b) CompCert fails to reject a program that has invalid
main function’s signature.

Figure 5: CompCert’s bugs found during our reduction process.

At link time, the build script instructs GCC to optimize
the program at -0s. However, because GCC enables the
flag fstrict-overflow by default at this optimization level,
it treated the wrap in foo.o’s IR as undefined behavior.
Subsequently, GCC incorrectly replaced the condition c>=0
with 1, causing the compiled program to hang.

GCC Bug #60461 The program in Figure 4b triggers a
linker error:

rar

function fn2: error: undefined reference to ’'a

This bug happens because the linker cannot find the refer-

ence to the global variable a[1], and as a result, it cannot
generate the executable. The bug manifests while GCC’s
LTO component performs interprocedural analyses. The
reference of a is not properly updated during the scalar
replacement of aggregates optimization.
GCC Bug #64684 The program in Figure 4c should
terminate normally. It is because at the if statement in
main, the value of a should be 8. However, GCC miscompiles
the program using the build configuration in Figure 4c: the
compiled program aborts. The value of a in this case is 1.

This happened because during its analyses, GCC gathered

incorrect information about the global variable a. Specifi-
cally, GCC mistakenly concluded that fn2 did not modify a.
Consequently, while compiling fnl, GCC ignored the call to
fn2. The value of a was 1, which was the result of -1 & 1
(this should have been 0 & 1).
LLVM Bug #19078 The program in Figure 4d is expected
to print -1 (the value of the global variable c), but prints
0 instead. Variable c is assigned -1 in the second for loop
of function fn3. However, when LTO is enabled, LLVM
miscompiles it into the following code, which prints 0:

int main() { printf("%sd\n", 0); return 0; }

LLVM Bug #19109 In Figure 4e, the compiled code by
LLVM fails the second assertion assert(a == 0) in function
foo. This should not happen because b points to a, and the
assignment *b = 0; sets a to 0 just before the assertion.

The reason is that, when LTO is enabled, LLVM incorrectly
moves the statement *f = &g down right before the second
assertion. Since f also points to a, this assignment changes
the value of a. The assertion is thus no longer valid.

LLVM Bug #19132 Figure 4f shows a bug in LLVM’s
LTO component. The main function invokes foo twice in
the for loop and terminates. However, when compiling with
LTO, LLVM incorrectly replaces the body of main with an
infinite loop. The miscompiled code is as follows:

int main() { while(1); }

4.4 Discussion

Proteus found a few hundred inconsistencies during our
testing period. We managed to reduce a good fraction of
them, and reported 37 bugs.2 However, we are yet to reduce
many other interesting ones because the current reduction
tools do not work very well for these programs. In general,
these programs have very deeply nested constructs, and
neither C-Reduce nor Berkeley Delta is able to simplify such
constructs. For example, Proteus found a link error bug in
GCC 4.7, in which the function calls recurse deeply on their
arguments (i.e., the function call argument is the call result
of the same function, whose argument is also the call result
of that function, and so on). As another example, Proteus
found many LLVM bugs, in which array member accesses are
deeply nested. We are developing new reduction strategies
that exploit programs’ syntactic and semantic structures to
reduce these programs.

Because Proteus’s reduction phase used CompCert’s C
interpreter heavily, we were able to exercise it thoroughly.
During our testing, we found two interesting CompCert bugs,
shown in Figure 5. Note that although both Csmith and
Orion have spent considerable efforts to stress-test CompCert,
they have yet to find a bug in its optimizer.

In the first bug, CompCert mistakenly allows an invalid
access to a multi-dimensional array (Figure 5a). The code

2Many inconsistencies are duplicate, thus we only report the
representatives.

should have undefined behavior as the array access e[0]1[3]
is clearly out-of-bound. The warnings from Clang and its
UB sanitizer, shown in the same figure, also indicate that
the code has undefined behavior. The author of CompCert
acknowledged the problem. The reason is that CompCert’s
C semantics checks that memory accesses are within the
bounds of the top-level object being accessed (e in this case),
but not of its sub-objects being accessed (e[0] in this case).

In the second bug, CompCert’s C interpreter fails to reject
the program that has invalid main function’s signature (Fig-
ure 5b). This program is undefined as the C standard only
allows two signatures: int main(void) and int main(int,
char *x) (and its equivalent forms). CompCert’s author con-
firmed this bug: the interpreter silently rejects the invalid
program without providing any error messages.

S. RELATED WORK

Compiler testing and verification has been a very active re-
search area, primarily due to the critical impact of compilers
on every computer system. This section surveys representa-
tive, closely related work in this area.

Verified Compilers A verified compiler guarantees that
the compiled code is semantically equivalent to its source
program. To achieve this goal, each verified compiler is
accompanied by a correctness proof that ensures the semantic
preservation. CompCert [9, 10] is the most notable example
of verified compilers. CompCert is mostly written in Coq
specification language, and its correctness is proved by the
Coq proof assistant. Zhao et al. proposed a new technique
to verify SSA-based optimizations in LLVM — a production
compiler — using the Coq proof assistant [26]. Malecha et al.
applied the idea of verified compilers to the database domain
and demonstrated preliminary results on building a verified
relational database management system [11].

Verified compilers have clear advantages over traditional
compilers due to their semantic preserving property. However,
there is much work to be done before we have a production-
quality verified compiler. CompCert, for example, currently
supports fewer language constructs and optimization tech-
niques than GCC and LLVM. As a result, verified compilers
are mainly suitable for safety-critical domains which may
be more willing to trade language expressiveness and perfor-
mance for increased correctness guarantees.

Translation Validation It is usually easier to prove that
a particular translation of a source program is correct than
to verify the correctness of all possible translations (of all
possible source programs). This is the motivation behind
translation validation, which aims to verify that the compiled
code is equivalent to its source on-the-fly. Hanan Samet intro-
duced the idea of translation validation in his PhD thesis [20].
Pnueli et al. did an early work on translation validation to
validate the non-optimizing compilation from SIGNAL pro-
grams to C programs [18]. Subsequently, Necula [16] extends
it to handle optimizing transformations and validates four
optimizations in GCC 2.7. Tristan et al. adapt the work on
equality saturation [21] to validate intraprocedural optimiza-
tions in LLVM [23].

However, translation validation has not yet been success-
ful in practice due to the following reasons. First, current
techniques only focus on intraprocedural optimizations, as
it is challenging to validate interprocedural optimizations.
Second, changes in an optimizer may require appropriate

changes in the validator attached to it. Lastly, it is possible
for the validator to produce wrong validation results, because
itself is unverified and thus may contain bugs.

Compiler Testing In practice, compiler testing still remains
the dominant technique for validating production compilers.
Every major compiler (such as GCC and LLVM) has its
own regression test suite which is maintained along with its
development. There are also some commercial test suites
available for checking compiler conformance and correctness
such as PlumHall [17], SuperTest [1].

The alternative is to use random testing to complement
these manually written test suites. Recent work by Nagai
et al. [14, 15] generates random arithmetic expressions to find
bugs in C compilers’ arithmetic optimizations. They have
found several bugs for GCC and LLVM. CCG is a random C
program generator that focuses on finding compiler crashing
bugs [3]. Csmith is another C program generator that can
find both crashing and miscompilation bugs [4, 19, 25]. Based
on the idea of differential testing [12], Csmith randomly gen-
erates C programs and checks for deviant behavior across
compilers or compiler versions. Csmith is very successful:
it found a few hundred GCC and LLVM bugs over the last
several years and contributed significantly to improving the
quality of these compilers. Le et al. introduce equivalent
modulo input, a technique that allows creation of many vari-
ants from a single program that are semantically equivalent
under some input to stress test compilers [8]. Their tool,
Orion, has also found hundreds of bugs in GCC and LLVM.
The majority of their bugs are miscompilation bugs.

Proteus is complementary. Its target is the LTO component
of a compiler, which has not been considered in previous
techniques. Several new challenges arising from testing this
component have been discussed in previous sections. Despite
its simplicity, Proteus can find LTO bugs at a considerable
rate in the most widely-used production compilers.

6. CONCLUSION

We have presented Proteus—a differential testing technique
to stress-test link-time optimizers—and the first extensive
effort to validate the LTO components of production C com-
pilers. Our evaluation on GCC and LLVM has led to 37 bug
reports in 11 months, clearly demonstrating the importance
of and Proteus’s utility in detecting LTO bugs. Our work
complements existing compiler validation techniques such as
Csmith and Orion. For future work, we plan to use Proteus
to continuously stress-test GCC and LLVM, and extend it
to support test programs derived from real-world projects.
The key challenge is how to effectively reduce such large test
cases, typically consisting of many source files.

7. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for valu-
able feedback on an earlier draft of this paper. Our special
thanks go to the GCC developers for their impressive prompt-
ness in analyzing and fixing our reported bugs. Our evalua-
tion also benefited significantly from Berkeley Delta [13], and
University of Utah’s Csmith [25] and C-Reduce [19] tools.

This research was supported in part by National Science
Foundation (NSF) Grants 1117603, 1319187, and 1349528.
The information presented here does not necessarily reflect
the position or the policy of the Government and no official
endorsement should be inferred.

References

1]

2]

3]

[10]

[11]

[13]

[14]

ACE. SuperTest compiler test and validation suite.
http://www.ace.nl/compiler/supertest.html.

B. Anckaert, F. Vandeputte, B. Bus, B. Sutter, and
K. Bosschere. Link-time optimization of ia64 binaries.
In M. Danelutto, M. Vanneschi, and D. Laforenza, edi-
tors, Furo-Par 2004 Parallel Processing, volume 3149
of Lecture Notes in Computer Science, pages 284—291.
Springer Berlin Heidelberg, 2004.

A. Balestrat. CCG: A random C code generator.
https://github.com/Merkil /ccg/.

Y. Chen, A. Groce, C. Zhang, W.-K. Wong, X. Fern,
E. Eide, and J. Regehr. Taming compiler fuzzers. In
Proceedings of the 2018 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 197-208, 2013.

B. De Sutter, L. Van Put, D. Chanet, B. De Bus, and
K. De Bosschere. Link-time compaction and optimiza-
tion of arm executables. ACM Trans. Embed. Comput.
Syst., 6(1), Feb. 2007.

GCC Wiki. Finding miscompilations on large testcases.
http://gcc.gnu.org/wiki/Analysing Large_Testcases/.

A. Groce, C. Zhang, E. Eide, Y. Chen, and J. Regehr.
Swarm testing. In International Symposium on Software
Testing and Analysis (ISSTA), pages 78-88, 2012.

V. Le, M. Afshari, and Z. Su. Compiler validation via
equivalence modulo inputs. In Proceedings of the 2014
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2014.

X. Leroy. Formal certification of a compiler back-end,
or: programming a compiler with a proof assistant. In
Proceedings of the 33rd ACM Symposium on Principles
of Programming Languages (POPL), pages 42-54. ACM
Press, 2006.

X. Leroy. A formally verified compiler back-end. Journal
of Automated Reasoning, 43(4):363-446, 2009.

G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky.
Toward a verified relational database management sys-
tem. In Proceedings of the 37th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 237-248, 2010.

W. M. McKeeman. Differential testing for software.
Digital Technical Journal, 10(1):100-107, 1998.

S. McPeak, D. S. Wilkerson, and S. Goldsmith. Berkeley
Delta. http://delta.tigris.org/.

E. Nagai, H. Awazu, N. Ishiura, and N. Takeda. Random
testing of C compilers targeting arithmetic optimization.
In Workshop on Synthesis And System Integration of
Mized Information Technologies (SASIMI 2012), pages
48-53, 2012.

(15]

(19]

[22

23]

(25]

[26]

E. Nagai, A. Hashimoto, and N. Ishiura. Scaling up
size and number of expressions in random testing of
arithmetic optimization of C compilers. In Workshop on
Synthesis And System Integration of Mixed Information
Technologies (SASIMI 2013), pages 88-93, 2013.

G. C. Necula. Translation validation for an optimizing
compiler. In Proceedings of the 2000 ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 83-94, 2000.

Plum Hall, Inc. The Plum Hall Validation Suite for C.
http://www.plumhall.com/stec.html.

A. Pnueli, M. Siegel, and E. Singerman. Translation
validation. In Proceedings of the 4th International Con-
ference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), pages 151-166, London,
UK, UK, 1998. Springer-Verlag.

J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. In
Proceedings of the 2012 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 335-346, 2012.

H. Samet. Automatically proving the correctness of trans-
lations involving optimized code. Phd thesis, Stanford
University, May 1975.

R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality
saturation: a new approach to optimization. In Proceed-
ings of the 36th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages, pages 264—276,
2009.

The Clang Team. Clang 3.4 documentation: Libtooling.
http://clang.llvm.org/docs/LibTooling.html.

J.-B. Tristan, P. Govereau, and G. Morrisett. Evalu-
ating value-graph translation validation for LLVM. In
Proceedings of the 2011 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), pages 295-305, 2011.

J.-B. Tristan and X. Leroy. Formal verification of trans-
lation validators: A case study on instruction scheduling
optimizations. In Proceedings of the 85th ACM Sympo-
stum on Principles of Programming Languages (POPL),
pages 17-27. ACM Press, Jan. 2008.

X. Yang, Y. Chen, E. Eide, and J. Regehr. Finding and
understanding bugs in C compilers. In Proceedings of
the 2011 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages
283-294, 2011.

J. Zhao, S. Nagarakatte, M. M. K. Martin, and
S. Zdancewic. Formal verification of SSA-based op-
timizations for LLVM. In Proceedings of the 2018 ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), pages 175-186, 2013.

	Introduction
	Illustrative Examples
	Design and Realization
	Differential Testing of LTO
	Implementation
	Bug Reduction
	Automatic Bug Finding and Reducing

	Evaluation
	Testing Setup
	Quantitative Results
	Assorted LTO Bugs
	Discussion

	Related Work
	Conclusion
	Acknowledgments

